Abstract

We use a two‐dimensional, time‐dependent sediment‐transport model to quantify across‐shelf transport, deposition, and sorting during wave‐driven resuspension events characteristic of those that dominate sediment transport on many continental shelves. Decreases in wave‐orbital velocities as water depth increases, and the resulting cross‐shelf gradient in bed shear stress favor a net offshore transport of sediment. On wide, flat shelves (slopes ∼0.1%percnt;), these gradients are low, and the depth to which the seabed is reworked depends mainly on bottom shear stress and local sediment availability. On narrow, steep shelves (slopes ∼0.5%percnt;), however, the gradient in bottom stress generates significant cross‐shelf suspended sediment flux gradients that create regions of net erosion and deposition. While the magnitude of waves generally determines the water depth to which sediment can be resuspended, erosional and depositional patterns on narrow shelves are sensitive to cross‐shelf gradients in wave energy, nonlocal sediment availability, and the direction and magnitude of the cross‐shelf current. During energetic waves, cross‐shelf divergence of suspended sediment flux can create a coarsened, erosional area on the inner shelf that abuts a region of fine‐grained sediment deposition on the mid‐to‐outer shelf. If currents are strongly shoreward, however, flux divergence leads to erosion over the entire shelf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.