Abstract

Carlyon and Shackleton [J. Acoust. Soc. Am. 95, 3541-3554 (1994)] presented an influential study supporting the existence of two pitch mechanisms, one for complex tones containing resolved and one for complex tones containing only unresolved components. The current experiments provide an alternative explanation for their finding, namely the existence of across-frequency interference in fundamental frequency (F0) discrimination. Sensitivity (d') was measured for F0 discrimination between two sequentially presented 400 ms complex (target) tones containing only unresolved components. In experiment 1, the target was filtered between 1375 and 15,000 Hz, had a nominal F0 of 88 Hz, and was presented either alone or with an additional complex tone ("interferer"). The interferer was filtered between 125-625 Hz, and its F0 varied between 88 and 114.4 Hz across blocks. Sensitivity was significantly reduced in the presence of the interferer, and this effect decreased as its F0 was moved progressively further from that of the target. Experiment 2 showed that increasing the level of a synchronously gated lowpass noise that spectrally overlapped with the interferer reduced this "pitch discrimination interference (PDI)". In experiment 3A, the target was filtered between 3900 and 5400 Hz and had an F0 of either 88 or 250 Hz. It was presented either alone or with an interferer, filtered between 1375 and 1875 Hz with an F0 corresponding to the nominal target F0. PDI was larger in the presence of the resolved (250 Hz F0) than in the presence of the unresolved (88 Hz F0) interferer, presumably because the pitch of the former was more salient than that of the latter. Experiments 4A and 4B showed that PDI was reduced but not eliminated when the interferer was gated on 200 ms before and off 200 ms after the target, and that some PDI was observed with a continuous interferer. The current findings provide an alternative interpretation of a study supposedly providing strong evidence for the existence of two pitch mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call