Abstract

The hamster sperm acrosome contains a stable matrix complex that binds specific hydrolases and appears to regulate their release during the acrosome reaction. This complex comprises two contiguous but ultrastructurally distinct regions that are segregated to specific sites within the acrosome. In this study, we define the temporal expression, processing, and localization of major matrix proteins of 29 kDa (AM29) and 22 kDa (AM22) during spermiogenesis and post-testicular sperm maturation in the epididymis. Peptide mapping, N-terminal microsequence analysis, immunoblotting, and immunocytochemistry were used to demonstrate that AM29 and AM22 of mature spermatozoa are structurally related and appear to arise from a common 40-kDa precursor protein expressed in round spermatids. A monoclonal antibody that recognized only the mature forms of the matrix proteins and a polyclonal antibody that recognized both the precursor and fully processed matrix proteins were prepared and used to demonstrate that the precursor protein is present in the acrosome of round spermatids and that it undergoes size processing during the terminal stages of spermiogenesis so that the mature matrix polypeptides are evident in epididymal spermatozoa. Finally, using light and electron microscopic immunocytochemistry, we demonstrated that the matrix polypeptides are excluded from the equatorial segment and are localized to both structurally distinct matrix domains of the mature acrosome. These data show that processing of the major proteins of the acrosomal matrix occurs in a temporally regulated fashion after their transport to the acrosome and that the processed products can assemble into ultrastructurally distinct matrix elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call