Abstract

Evidence has accumulated suggesting multiple roles of acrosin in fertilization, including its participation in early steps of gamete recognition and binding. However, the implication of acrosin in many of these processes is not compatible with its presumptive sequestration within the sperm acrosome until a late phase of the acrosome reaction. In an earlier study (J. Tesarik, J. Drahorad, J. Peknicova, 1988, Fertil. Steril. 50, 133-141), we reported the binding of an anti-acrosin monoclonal antibody (MO-AKR.1) to the plasma membrane overlying the acrosome of human spermatozoa starting the acrosome reaction. In this study, we characterized further this antibody with regard to its reactivity with different forms of acrosin and found that it recognizes specifically an active form of this enzyme and does not react with its proenzyme form. MO-AKR.1 was thus used as a probe for in situ analysis of acrosin activation during the acrosome reaction. When suspensions of living spermatozoa were incubated with MO-AKR.1 and with another monoclonal antibody (T6) directed to an intra-acrosomal cytoskeletal protein, significantly more spermatozoa reacted with the former antibody than with the latter; this indicated that some of the spermatozoa showing acrosin immunoreactivity carried activated acrosin on the cell surface, while their acrosome was still impermeable to intra-acrosomal-directed probes. The size of this particular sperm subpopulation was increased by the action of follicular fluid (a natural acrosome reaction inducer), but not ionophore A23187 (an artificial acrosome reaction inducer); it corresponded to the proportion of spermatozoa showing acrosin immunoreactivity on the plasma membrane but neither intra-acrosomal staining nor perceptible membrane perturbations when examined by immunoelectron microscopy. When spermatozoa were pre-incubated with protease inhibitors before the addition of acrosome reaction-inducing agents, the percentage of cells binding MO-AKR.1 was markedly reduced. These data suggest that limited acrosin activation on the sperm plasma membrane is an early event in the physiological acrosome reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call