Abstract

Reinforcement learning (RL) has been applied to constructing controllers for nonlinear systems in recent years. Since RL methods do not require an exact dynamics model of the controlled object, they have a higher flexibility and potential for adaptation to uncertain or nonstationary environments than methods based on traditional control theory. If the target system has a continuous state space whose dynamic characteristics are nonlinear, however, RL methods often suffer from unstable learning processes. For this reason, it is difficult to apply RL methods to control tasks in the real world. In order to overcome the disadvantage of RL methods, we propose an RL scheme combining multiple controllers, each of which is constructed based on traditional control theory. We then apply it to a swinging-up and stabilizing task of an acrobot with a limited torque, which is a typical but difficult task in the field of nonlinear control theory. Our simulation result showed that our method was able to realize stable learning and to achieve fairly good control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.