Abstract

A new, selective chemosensor has been developed to detect cyanide in water at micromolar concentrations. The acridinium salt used in this sensor system is prepared in a single step from an acridine orange base. Detection is based on the irreversible, 1:1 stoichiometric, nucleophilic addition of cyanide to the 9-position of the acridinium ion. This process induces a large decrease in fluorescence intensity and a marked color change. The selectivity of the system in aqueous media for CN- over other anions is remarkably high. Also, the sensitivity of both the fluorescence- and colorimetric-based assay is below the 1.9 microM suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water. Thus, the chemodosimeter should be applicable as a practical system for the monitoring of CN- concentrations in aqueous samples. [structure: see text]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.