Abstract

We established a green approach for the radical synthesis of tetrahydrobenzo[b]pyran scaffolds by using Knoevenagel-Michael tandem cyclocondensation of aldehyde derivatives, malononitrile, and dimedone. Using visible light as a renewable energy source, a photo-induced electron transfer (PET) photocatalyst was exploited in an aqueous solution. A low-cost, readily available non-metal dye is the goal of this research. The photochemically catalyzed acridine yellow G (AYG) exhibits high yields, energy efficiency, and environmental friendliness, as well as speed-saving characteristics and ease of use. This allows for tracking of environmental and chemical variables over time. In this study, turnover number (TON) and turnover frequency (TOF) of tetrahydrobenzo[b]pyran scaffolds were determined. It is remarkable that gram-scale cyclization is feasible, indicating that it can be applied to industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.