Abstract

Overexpression of bacterial efflux pumps is a driver of increasing antibiotic resistance in Gram-negative pathogens. The AcrAB-TolC efflux pump has been implicated in resistance to a number of important antibiotic classes including fluoroquinolones, macrolides, and β-lactams. Antisense technology, such as peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), can be utilized to inhibit expression of efflux pumps and restore susceptibility to antibiotics. Targeting of the AcrAB-TolC components with PPMOs revealed a sequence for acrA, which was the most effective at reducing antibiotic efflux. This acrA-PPMO enhances the antimicrobial effects of the levofloxacin and azithromycin in a panel of clinical Enterobacteriaceae strains. Additionally, acrA-PPMO enhanced azithromycin in vivo in a K.pneumoniae septicemia model. PPMOs targeting the homologous resistance-nodulation-division (RND)-efflux system in P.aeruginosa, MexAB-OprM, also enhanced potency to several classes of antibiotics in a panel of strains and in a cell culture infection model. These data suggest that PPMOs can be used as an adjuvant in antibiotic therapy to increase the efficacy or extend the spectrum of useful antibiotics against a variety of Gram-negative infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call