Abstract

Ultra-short echo time (UTE) MRI requires both short excitation ( approximately 0.5 ms) and short acquisition delay (<0.2 ms) to minimize T(2)-induced signal decay. These requirements currently lead to low acquisition efficiency when high resolution (<1 mm) is pursued. A novel pulse sequence, acquisition-weighted stack of spirals (AWSOS), is proposed here to acquire high-resolution three-dimensional (3D) UTE images with short scan time ( approximately 72 s). The AWSOS sequence uses variable-duration slice encoding to minimize T(2) decay, separates slice thickness from in-plane resolution to reduce the number of slice encodings, and uses spiral trajectories to accelerate in-plane data collections. T(2)- and off-resonance induced slice widening and image blurring were calculated from 1.5 to 7 Tesla (T) through point spread function. Computer simulations were performed to optimize spiral interleaves and readout times. Phantom scans and in vivo experiments on human heads were implemented on a clinical 1.5T scanner (G(max) = 40 mT/m, S(max) = 150 T/m/s). Accounting for the limits on B(1) maximum, specific absorption rate (SAR), and the lowered amplitude of slab-select gradient, a sinc radiofrequency (RF) pulse of 0.8ms duration and 1.5 cycles was found to produce a flat slab profile. High in-plane resolution (0.86 mm) images were obtained for the human head using echo time (TE) = 0.608 ms and total shots = 720 (30 slice-encodings x 24 spirals). Compared with long-TE (10 ms) images, the ultrashort-TE AWSOS images provided clear visualization of short-T(2) tissues such as the nose cartilage, the eye optic nerve, and the brain meninges and parenchyma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.