Abstract

Learning is considered to consist of two distinct phases–acquisition and consolidation. Acquisition can be disrupted when short periods of training on more than one task are interleaved, whereas consolidation can be disrupted when a second task is trained after the first has been initiated. Here we investigated the conditions governing the disruption to acquisition and consolidation during mixed-training regimens in which primary and secondary amplitude modulation tasks were either interleaved or presented consecutively. The secondary task differed from the primary task in either task-irrelevant (carrier frequency) or task-relevant (modulation rate) stimulus features while requiring the same perceptual judgment (amplitude modulation depth discrimination), or shared both irrelevant and relevant features but required a different judgment (amplitude modulation rate discrimination). Based on previous literature we predicted that acquisition would be disrupted by varying the task-relevant stimulus feature during training (stimulus interference), and that consolidation would be disrupted by varying the perceptual judgment required (task interference). We found that varying the task-relevant or -irrelevant stimulus features failed to disrupt acquisition but did disrupt consolidation, whereas mixing two tasks requiring a different perceptual judgment but sharing the same stimulus features disrupted both acquisition and consolidation. Thus, a distinction between acquisition and consolidation phases of perceptual learning cannot simply be attributed to (task-relevant) stimulus versus task interference. We propose instead that disruption occurs during acquisition when mixing two tasks requiring a perceptual judgment based on different cues, whereas consolidation is always disrupted regardless of whether different stimulus features or tasks are mixed. The current study not only provides a novel insight into the underlying mechanisms of perceptual learning, but also has practical implications for the optimal design and delivery of training programs that aim to remediate perceptual difficulties.

Highlights

  • Perceptual learning refers to the process whereby sensory processing is improved through experience or following training on a task [1]

  • Acquisition of the primary amplitude modulation depth discrimination task (AMD) 4/1 task was not disrupted when it was interleaved with a secondary task sharing the same perceptual judgment (AMD) regardless of whether the stimulus differed on the task-irrelevant or task-relevant feature, but was disrupted when interleaved with a secondary task requiring a judgment based on a different cue that shared the same stimulus features (Fig. 4A)

  • The key findings can be summarized as follows: (1) acquisition of the primary task was disrupted only when two tasks requiring a perceptual judgment based on different cues were mixed during training; (2) consolidation of the primary task was always disrupted, at least partially, regardless of whether different stimulus features or tasks were mixed; (3) the secondary task was always learned, regardless of whether the different cues or stimulus features were mixed during acquisition or consolidation; and (4) mixing the task-relevant stimulus feature resulted doi:10.1371/journal.pone.0121953.g007

Read more

Summary

Introduction

Perceptual learning refers to the process whereby sensory processing is improved through experience or following training on a task [1]. Studies in the laboratory attempt to artificially simulate this ‘real-world’ experience, exploring interactions between tasks in mixed-design training regimens. Mixed-training paradigms have shown that learning on a particular task can either be facilitated or disrupted depending on other tasks that precede or follow it In order to address this, the current study systematically investigated the effects of inter-task interactions on perceptual learning. Understanding how tasks interact during multi-task training has important theoretical and practical implications, improving our understanding of the underlying mechanisms of learning, as well as informing the optimal design and delivery of applied training programs that aim to improve perceptual abilities

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.