Abstract

High-density rainfall data is always desired to capture the heterogeneity of precipitation to accurately describe the components of the hydrological cycle. However, equipping and maintaining a high-density rain gauge network involve high costs, and the existing rain gauges are often unable to meet the density requirements. The objective of this study is to provide a new method to analyze the spatiotemporal variability of the precipitation field and to solve the problem of insufficient site density. To this end, the proper orthogonal decomposition (POD) method is proposed, which can analyze the spatial distribution characteristics of rainfall fields to solve data shortages. To demonstrate the feasibility and advantages of the proposed methodology, four districts and counties (Hongshan District, Jianli County, Sui County, and Xuanen County) in Hubei province in China were selected as case studies. The principal results are as follows. (1) The proposed method is effective in analyzing the spatiotemporal variability of the rainfall field to reconstruct rainfall processes in ungauged basins. (2) Compared with the commonly used Thiessen polygon method, the inverse distance weighting method, and the Kriging method, POD is more accurate and convenient, and the root mean squared error is reduced from 3.22, 1.83, 2.19 to 2.09; the correlation coefficients are improved from 0.60, 0.85, 0.79 to 0.89, respectively. (3) The POD method performs particularly well in simulating the peak value and the peak time and can offer a meaningful reference for analyzing the spatial distribution of rainfall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call