Abstract

Oscillating-gradient spin echo (OGSE) diffusion experiments have long been used to measure the short-time apparent diffusion coefficient, D app ( t), in the presence of restricted diffusion, as well as the spectrum of the slow-motion velocity autocorrelation function. In this work, we focus on two previously unexplored aspects of OGSE experiments: convection compensation and acquisition of pure-phase diffusion spectra in the presence of homonuclear scalar couplings. We demonstrate that convection compensation afforded by single-echo OGSE compares well with that in double-echo convection-compensated PGSE experiments. We also show that, in the presence of homonuclear scalar couplings, setting the OGSE echo time to 1/2 J enables acquisition of pure-phase diffusion spectra and yields more reliable D estimates than mixed-phase PGSE or OGSE spectra. Pure-phase OGSE acquisition is also compatible with measurements of the apparent diffusion coefficient at an arbitrary diffusion time. These features of OGSE can be valuable in diffusion measurements of scalar-coupled small-molecule probes in cellular and other heterogeneous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.