Abstract

Toxoplasma gondii is a protozoan parasite that persists in the central nervous system as intracellular chronic-stage bradyzoites that are encapsulated by a thick cyst wall. While the cyst wall separates bradyzoites from the host cytosol, it has been posited that small solutes can traverse the cyst wall to sustain bradyzoites. Recently, it was found that host cytosolic macromolecules can cross the parasitophorous vacuole and are ingested and digested by actively replicating acute-stage tachyzoites. However, the extent to which bradyzoites have an active ingestion pathway remained unknown. To interrogate this, we modified previously published protocols that look at tachyzoite acquisition and digestion of host proteins by measuring parasite accumulation of a host-expressed reporter protein after impairment of an endolysosomal protease (cathepsin protease L [CPL]). Using two cystogenic parasite strains (ME49 and Pru), we demonstrate that T. gondii bradyzoites can ingest host-derived cytosolic mCherry. Bradyzoites acquire host mCherry within 4 h of invasion and after cyst wall formation. This study provides direct evidence that host macromolecules can be internalized by T. gondii bradyzoites across the cyst wall in infected cells.IMPORTANCE Chronic infection of humans with Toxoplasma gondii is common, but little is known about how this intracellular parasite obtains the resources that it needs to persist indefinitely inside neurons and muscle cells. Here, we provide evidence that the chronic-stage form of T. gondii can internalize proteins from the cytosol of infected cells despite residing within an intracellular cyst that is surrounded by a cyst wall. We also show that accumulation of host-derived protein within the chronic-stage parasites is enhanced by disruption of a parasite protease, suggesting that such protein is normally degraded to generate peptides and amino acids. Taken together, our findings imply that chronic-stage T. gondii can ingest and digest host proteins, potentially to support its persistence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.