Abstract

Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis, but possessing much higher constitutive levels of tolerance to abiotic stress. This study aimed to characterize the freezing tolerance of Arabidopsis (Columbia ecotype) and two ecotypes of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations. Under our growth conditions, maximal freezing tolerance was observed after two- and three-weeks of cold acclimation for Arabidopsis and Eutrema, respectively. The ecotypes of Eutrema and Arabidopsis do not differ in their constitutive level of freezing tolerance or short-term cold acclimation capacity. However Eutrema remarkably outperforms Arabidopsis in long-term acclimation capacity suggesting a wider phenotypic plasticity for the trait of freezing tolerance. The combination of drought treatment and one-week of cold acclimation was more effective than long-term cold acclimation in achieving maximum levels of freezing tolerance in Eutrema, but not Arabidopsis. Furthermore, it was demonstrated growth conditions, particularly irradiance, are determinates of the level of freezing tolerance attained during cold acclimation suggesting a role for photosynthetic processes in adaptive stress responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.