Abstract

Blurred diffraction images acquired from flowing particles affect the measurement of fringe patterns and subsequent analysis. An imaging unit with one time-delay-integration (TDI) camera has been developed to acquire two cross-polarized diffraction images. It was shown that selected elements of Mueller matrix of single scatters can be imaged with pixel matching precision in this configuration. With the TDI camera, the effect of blurring on imaging of scattered light propagating along the side directions was found to be much more significant for biological cells than microspheres. Despite blurring, classification of MCF-7 and K562 cells is feasible since the effect has similar influence on extracted image parameters. Furthermore, image blurring can be useful for analysis of the correlations among texture parameters for characterization of diffraction images from single cells. The results demonstrate that with one TDI camera the polarization diffraction imaging flow cytometry can be significantly improved and angular distribution of selected Mueller matrix elements can be accurately measured for rapid and morphology-based assay of particles and cells without fluorescent labeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.