Abstract

The performance of goal-directed actions relies on an animal's previous knowledge of the outcomes or consequences that result from its actions. Additionally, a sensorimotor learning process linking environmental stimuli with actions influences instrumental performance by selecting actions for additional evaluation. These distinct decision-making processes in rodents depend on separate subregions of the dorsal striatum. Whereas the posterior dorsomedial striatum (pDMS) is required for the encoding of actions with their outcomes or consequences, the dorsolateral striatum (DLS) mediates action selection based on sensorimotor learning. However, the molecular mechanisms within these brain regions that support learning and performance of goal-directed behavior are not known. Here we show that activation of extracellular signal-regulated kinase (ERK) in the dorsal striatum has a critical role in learning and performance of instrumental goal-directed behavior in rodents. We observed an increase in p42 ERK (ERK2) activation in both the pDMS and DLS during both the acquisition and performance of recently acquired instrumental goal-directed actions. Furthermore, disruption of ERK activation in the pDMS prevented both the acquisition of action-outcome associations, as well as the performance of goal-directed actions guided by previously acquired associations, whereas disruption of ERK activation in the DLS disrupted instrumental performance but left instrumental action-outcome learning intact. These results provide evidence of a critical, region-specific role for ERK signaling in the dorsal striatum during the acquisition of instrumental learning and suggest that processes sensitive to ERK signaling within these striatal subregions interact to control instrumental performance after initial acquisition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.