Abstract

Optical penetration inside human skin is constrained by the wavelength dependent scattering and absorption losses by tissue microstructure and chromophores. This computational study investigates whether the signature of hematocrit variation from plexus i.e., the first skin layer having very small blood volume percentage distributed in capillary vessels, is retained by the detected photoacoustic response. The in-silico skin phantom is irradiated by a light source equivalent to a small footprint and low power (below 5 W) continuous wave LASER diode. As the low fluence can be compensated by exploiting strong absorption by targeted chromophores (hemoglobin molecules), an irradiation of wavelength 405 nm has been used to generate detectable pressure from capillary blood vessels of plexus. Optical energy deposition inside the tissue has been modelled using Monte Carlo technique and the pressure wave is computed using k-wave. It is found that with the increase in hematocrit from 10% to 50%, photoacoustic amplitude monotonically increases and gets almost doubled. The increment is about 30% in the range of hematocrit of physiological interest (from 30% to 50%). The variation follows a quadratic relationship for the entire hematocrit range. This photoacoustic signature of hematocrit variation has further been validated against minimum detectable pressure (800 Pa). This numerical model is expected to be an important basis to realize the idea of low cost small footprint in-vivo photoacoustic hematocrit measurement device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.