Abstract
Embedding Radio-Frequency IDentification (RFID) into everyday objects to construct ubiquitous networks has been a long-standing goal. However, a major problem that hinders the attainment of this goal is the current inefficient reading of RFID tags. To address the issue, the research community introduces the technique of Bloom Filter (BF) to RFID systems. This work presents TagMap, a practical solution that acquires BFs across commercial off-the-shelf (COTS) RFID tags in the physical layer , enabling upper applications to boost their performance by orders of magnitude. The key idea is to treat all tags as if they were a single virtual sender, which hashes each tag into different intercepted inventories . Our approach does not require hardware nor firmware changes in commodity RFID tags - allows for rapid, zero-cost deployment in existing RFID tags. We design and implement TagMap reader with commodity device (e.g., USRP N210) platforms. Our comprehensive evaluation reveals that the overhead of TagMap is 66.22% lower than the state-of-the-art solution, with a bit error rate of 0.4%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.