Abstract

The external environment, particularly wastewater treatment plants (WWTPs), where environmental bacteria meet human commensals and pathogens in large numbers, has been highlighted as a potential breeding ground for antibiotic resistance. We have isolated the extensively drug-resistant Ochrobactrum intermedium CCUG 57381 from an Indian WWTP receiving industrial wastewater from pharmaceutical production contaminated with high levels of quinolones. Antibiotic susceptibility testing against 47 antibiotics showed that the strain was 4 to >500 times more resistant to sulfonamides, quinolones, tetracyclines, macrolides, and the aminoglycoside streptomycin than the type strain O. intermedium LMG 3301T. Whole-genome sequencing identified mutations in the Indian strain causing amino acid substitutions in the target enzymes of quinolones. We also characterized three acquired regions containing resistance genes to sulfonamides (sul1), tetracyclines [tet(G) and tetR], and chloramphenicol/florfenicol (floR). Furthermore, the Indian strain harbored acquired mechanisms for horizontal gene transfer, including a type I mating pair-forming system (MPFI), a MOBP relaxase, and insertion sequence transposons. Our results highlight that WWTPs serving antibiotic manufacturing may provide nearly ideal conditions for the recruitment of resistance genes into human commensal and pathogenic bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.