Abstract

Simple SummaryOvarian clear cell carcinoma (CCC) exhibits unique characteristics, including slow growth, glycogen accumulation in the cytoplasm, and poor prognosis for stress resistance. Several molecular targeting agents have failed to treat ovarian CCC. Recent reports have identified metabolic alterations through HNF1B, which is highly expressed in ovarian CCC. The Warburg effect, GSH synthesis, and mitochondrial regulation occur in CCC. The metabolic behaviors of ovarian CCC resemble the evolution of life to survive in stressful environments. Understanding the fundamental biology of ovarian CCC might help in the development of novel therapeutic strategies.Clear cell carcinoma (CCC) of the ovary exhibits a unique morphology and clinically malignant behavior. The eosinophilic cytoplasm includes abundant glycogen. Although the growth is slow, the prognosis is poor owing to resistance to conventional chemotherapies. CCC often arises in endometriotic cysts and is accompanied by endometriosis. Based on these characteristics, three clinical questions are considered: why does ovarian cancer, especially CCC and endometrioid carcinoma, frequently occur in endometriotic cysts, why do distinct histological subtypes (CCC and endometrioid carcinoma) arise in the endometriotic cyst, and why does ovarian CCC possess unique characteristics? Mutations in AT-rich interacting domain-containing protein 1A and phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit alpha genes may contribute to the carcinogenesis of ovarian CCC, whereas hepatocyte nuclear factor-1-beta (HNF1B) plays crucial roles in sculpting the unique characteristics of ovarian CCC through metabolic alterations. HNF1B increases glutathione synthesis, activates anaerobic glycolysis called the Warburg effect, and suppresses mitochondria. These metabolic changes may be induced in stressful environments. Life has evolved to utilize and control energy; eukaryotes require mitochondria to transform oxygen reduction into useful energy. Because mitochondrial function is suppressed in ovarian CCC, these cancer cells probably acquired further metabolic evolution during the carcinogenic process in order to survive stressful environments.

Highlights

  • cell carcinoma (CCC) and endometrioid carcinoma, occur frequently in endometriotic cysts? Second, why is endometriosis-related ovarian cancer more associated with specific histological subtypes, including CCC and endometrioid carcinoma, and why do distinct histological subtypes arise in endometriotic cysts? Third, why does ovarian CCC have unique characteristics? Recently, the molecular biological features of CCC have been reported using next-generation sequencing technology

  • Using expression microarrays of ovarian cancer, we identified a gene set composed of 320 genes which are specific to ovarian CCC and named them ovarian CCC signatures [32]

  • These findings indicate that CCC exhibits different responses against oxidative stress from endometrioid carcinoma, both subtypes develop in an oxidative stress environment, suggesting that ferroptosis is suppressed in CCC

Read more

Summary

Introduction

Why is endometriosis-related ovarian cancer more associated with specific histological subtypes, including CCC and endometrioid carcinoma, and why do distinct histological subtypes arise in endometriotic cysts? There are similar gene mutations in the orthotopic endometrium and ovarian endometriosis [16,17], and the possibility of carcinogenesis due to two hits in the ovary, as the same mutation has been found in eutopic endometrium, endometriotic cyst, and ovarian CCC [16]. The development of CCC has rapidly been understood from genetic analysis; the reasons for CCC being more frequent in endometriosis-related ovarian cancer and its unique characteristics are not clear. This review describes the roles of the carcinogenic environment leading to the development of CCC in endometriotic cysts and highlights the importance of metabolic regulation in sculpting the unique biology of ovarian CCC.

Endometriotic Cyst as a Carcinogenic Environment for Ovarian Cancer
Two Hypothetical Theories for Carcinogenesis Process among
Unique Characteristics of Ovarian CCC Induced in Carcinogenic Environments
Genomic and Epigenetic Alterations in Ovarian CCC
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call