Abstract

Urban rail transportation (URT) has long become the preferred public transportation choice for major metropolitan areas such as New York, London, Paris, Moscow, Tokyo, and Beijing. The highest daily record for Beijing's URT reached 5.71 million passenger trips in 2010, which makes the network extremely crowded in rush hours. To accommodate the increasing demand for URT, the service frequencies have been increased tremendously. To address these safety, efficiency, and reliability issues, the paper presents a novel parallel system for URT operations that uses the concept of parallel system and computational experiments based on artificial systems (ACP). The parallel URT system can analyze and facilitate passenger-flow management, vehicle scheduling, and other operational issues while considering human-related, environmental, and other social and economical factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.