Abstract

Acoustofluidics, the fusion of acoustics and microfluidic techniques, has recently seen increased research attention across multiple disciplines due in part to its capabilities in contactless, biocompatible, and precise manipulation of micro-/nano-objects. Herein, a bimodal signal amplification platform which relies on acoustofluidics-induced enrichment of nanoparticles is introduced. The dual-function biosensor can perform sensitive immunofluorescent or surface-enhanced Raman spectroscopy (SERS) detection. The platform functions by using surface acoustic waves to concentrate nanoparticles at either the center or perimeter of a glass capillary; the concentration location is adjusted simply by varying the input frequency. The immunofluorescence assay is achieved by concentrating fluorescent analytes and functionalized nanoparticles at the center of the microchannel, thereby improving the visibility of the fluorescent output. By modifying the inner wall of the glass capillary with plasmonic Ag nanoparticle-deposited ZnO nanorod arrays and focusing analytes toward the perimeter of the microchannel, SERS sensing using the same device setup is achieved. Nanosized exosomes are used as a proof-of-concept to validate the performance of the acoustofluidic bimodal biosensor. With its sample-enrichment functionality, bimodal sensing, short processing time, and minute sample consumption, the acoustofluidic chip holds great potential for the development of lab-on-a-chip based analysis systems in many real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.