Abstract

Acoustoelastic (AE) analysis of initial stresses plays an important role as a nondestructive tool in current engineering. Two textured BST (Ba0.65Sr0.35TiO3) thin films, with different substrate to target distance, were grown on Pt(111)/TiO2/SiO2/Si(001) substrate by rf-magnetron sputtering deposition techniques. A conventional “sin2 ψ” method to determine residual stress and strain in BST films by X-ray diffraction is applied. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in both samples. Young's modulus E and Poisson ratio ν of BST films in different propagation directions are derived from the measured dispersion curves. Estimation of effective second-order elastic constants of BST thin films in stressed states is served in SAW study. This paper presents an original investigation of AE effect in prestressed Ba0.65Sr0.35TiO3 films, where the effective elastic constants and the effect of texture on second and third order elastic tensor are considered and used. The propagation behavior of Rayleigh and Love waves in BST thin films under residual stress is explored and discussed. The guiding velocities affected by residual stresses, reveal some shifts which do not exceed four percent mainly in the low frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call