Abstract

Acoustic traps use forces exerted by sound waves to confine and transport small objects. The dynamics of an object moving in the force landscape of an acoustic trap can be significantly influenced by the inertia of the surrounding fluid medium. These inertial effects can be observed by setting a trapped object in oscillation and tracking it as it relaxes back to mechanical equilibrium in its trap. Large deviations from Stokesian dynamics during this process can be explained quantitatively by accounting for boundary-layer effects in the fluid. The measured oscillations of a perturbed particle then can be used not only to calibrate the trap but also to characterize the particle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call