Abstract

This work describes the results of initial evaluation of a wideband acousto-optic hydrophone probe designed to operate as point receiver in the frequency range up to 100MHz. The hydrophone was implemented as a tapered fiber optic (FO) probe sensor with a tip diameter of approximately 7μm. Such small physical dimensions of the sensor eliminate the need for spatial averaging corrections so that true pressure–time (p–t) waveforms can be faithfully recorded. The theoretical considerations that predicted the FO probe sensitivity to be equal to 4.3mV/MPa are presented along with a brief description of the manufacturing process. The calibration results that verified the theoretically predicted sensitivity are also presented along with a brief description of the improvements being currently implemented to increase this sensitivity level by approximately 20dB. The results of preliminary measurements indicate that the fiber optic probes will exhibit a uniform frequency response and a zero phase shift in the frequency range considered. These features might be very useful in rapid complex calibration i.e. determining both magnitude and phase response of other hydrophones by the substitution method. Also, because of their robust design and linearity, these fiber optic hydrophones could also meet the challenges posed by high intensity focused ultrasound (HIFU) and other therapeutic applications. Overall, the outcome of this work shows that when fully developed, the FO probes will be well suited for high frequency measurements of ultrasound fields and will be able to complement the data collected by the current finite aperture piezoelectric PVDF hydrophones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.