Abstract

Focused sound field measurements typically involve needle- or membrane-type transducers stepped across the sound field. This process produces an apparent image of the sound field limited by probe linearity, effective aperture size, and experimental alignment. Historically, acousto-optic schlieren imaging has provided an effective, qualitative technique for examining a sound-pressure field. In this paper the schlieren technique is extended to provide quantitative measurements of the peak focused sound-pressure field without in situ disruptions. A numerical solution of the Khokhlov–Zabolotskaya–Kuznetsov parabolic equation is used to predict the sound-pressure field for a line focused transducer. Enhancements in the standard numerical solution include a floating boundary condition and an adaptive technique for adjusting the computation effectiveness consistent with nonlinearity induced harmonic growth. Key features of the experimental setup are outlined and theoretical predictions compared with experimental measurements made with the extended schlieren technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.