Abstract

When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72–82% (freely-read CDS) and 90–98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across languages. The S-AMPH model reveals a crucial developmental role for stress feet (AMs ~2 Hz). Stress feet underpin different linguistic rhythm typologies, and speech rhythm underpins language acquisition by infants in all languages.

Highlights

  • A necessary step in language acquisition is the development of a phonological system, implicit knowledge about the inventory of the sound system of a language

  • In a preliminary spectral Principle Component Analysis (PCA) analysis, we found that the loading patterns we obtained were broadly similar whether we used all datapoints, or only a subset of datapoints that were separated by 250 ms or by 500 ms

  • By analysing the patterns of component loading across the channels in a high-dimensional representation, we reasoned that one should be able to identify groups of adjacent channels that belong to the same core band of spectral or temporal modulation

Read more

Summary

Introduction

A necessary step in language acquisition is the development of a phonological system, implicit knowledge about the inventory of the sound system of a language. By 2–3 years of age, children can count the number of syllables in a word, and say whether two words rhyme [2] These are deceptively complex feats of speech engineering, in principle requiring the child to utilise the overt acoustic spectro-temporal structure of the speech signal in order to discover the latent phonological building blocks of the English language. These building blocks can be viewed as a nested hierarchy of prosodic stress patterns, syllables and onset-rime units

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call