Abstract

Porous materials have a variety of applications such as catalysis, gas separation, sensing, tissue engineering, sewage treatment, and so on. However, there are still challenges in the synthesis of porous materials with light weight, high porosity, and superhydrophobicity. Herein, we demonstrate one acoustic-controlled microbubble generation method, which is used to synthesize 3D polymer porous materials. The acoustic-controlled microbubble generation based on focused surface acoustic wave (FSAW) is suitable for not only the generation of gas-in-oil microbubbles but also the gas-in-water microbubbles. The size of microbubbles can be real-time controlled by adjusting the frequency or the driving voltage of the FSAW. The as-prepared poly(vinyl alcohol) (PVA) foams composed of microbubbles can be used as a template to fabricate the PVA-based porous gel materials through freezing-thawing cyclic processing, and the various sized bubbles result in different porosity of the PVA-based porous gel materials. Moreover, excellent properties like oleophilicity and superhydrophobicity of the PVA-based porous gel materials can be obtained through a further hydrophobic modification treatment. The oil/water separation experiments have been done to demonstrate the good absorption and reliability of the modified porous gel materials, which are capable of multiple uses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call