Abstract

Magneto-optic Kerr microscopy was employed to investigate the spin-orbit interactions of electrons traveling in semiconductor quantum wells using surface acoustic waves (SAWs). Two-dimensional images of the spin flow induced by SAWs exhibit anisotropic spin precession behaviors caused by the coexistence of different types of spin-orbit interactions. The dependence of spin-orbit effective magnetic fields on SAW intensity indicates the existence of acoustically controllable spin-orbit interactions resulting from the strain and Rashba contributions induced by the SAWs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call