Abstract

Acoustical indoor positioning — a technology to locate objects or people inside a building using acoustical signals — is a key technology for contextual awareness and ubiquitous computing. To achieve simple localization, in this paper, we propose a transponder-based indoor positioning method. The proposed method does not require clock synchronization for accurate positioning. Furthermore, by using an adaptive signal level normalizer, the terminal can receive acoustic signals with appropriate levels resulting in accurate positioning. We designed a transponder-based indoor positioning method using audible sound and evaluated its performance in experiments. In experiments, three anchors (transponders) of known position are installed on a ceiling of an anechoic chamber, and positioning is performed by setting a terminal in various points. Positioning experiment results showed that the proposed method can achieve on the order of 0.08 ± 0.02 m positioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call