Abstract

The acoustic properties of highly porous polylactic acid (PLA) foams with very low densities (as low as 0.12 g/cm3) are evaluated using an impedance tube. PLA foams with a mesoporous or a combined meso/macroporous morphology exhibiting different mechanical and physical properties, are produced via nonsolvent induced phase separation (NIPS). The resulting foams exhibit an interesting resonance-like acoustic absorption behavior providing the opportunity to design acoustic materials to target specific frequency bands by controlling their microstructure. Despite very low densities, plane wave tube measurements suggest that these PLA foams may have the potential for sound barrier applications. Using the transfer matrix approach on multilayer configurations, we showed that the combined meso/macroporous morphology has the most significant impact on the absorption and transmission capacity of the foams. The knowledge produced from this study helps to understand the correlation between the characteristics of highly porous NIPS-derived foams and their acoustic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.