Abstract

In this work, the acoustic effects of horizontal air-water flow through an orifice are investigated experimentally. Single phase flow (air) and two-phase flow (air and water) tests are performed for two sets of orifices. One set of straight edged and one set of upstream rounded orifices. For each set, the diameters of the orifices were 2, 5, and 10mm, with a thickness of 5 mm. The two-phase flow is generated by injecting water at a rate of 0 to 40 g/s to air in a pipe with diameter of 25 mm. The air rate is fixed in the range from 5.8 to 14 g/s, where the upstream pressure varies from 1.5 to 4 bar at ambient temperature. Unsteady pressure fluctuations are recorded at two upstream and two downstream position. The valve noise standard NEN-EN-IEC (60534-8-3, 2011) for dry gas is assessed by means of experimental data in dry conditions at fixed air mass flow rate. Predictions of sound power spectra by means of the standard are found to be more accurate compared to those obtained following Reethof & Ward (1986), also in conditions of a choked orifice. In case of multiphase flow already at very low liquid fractions of much less than 1%, the standard is no longer valid. The frequency spectrum is no longer determined by the jet noise but starts to be dominated by low frequency general multiphase flow. The Strouhal number based on the jet conditions is an order lower than Sr = 0.2 indicating process variations rather than jet noise. Furthermore, at choking conditions the further expansion which occurs in single phase flow is likely different at multiphase flow. For non-choked flow, the standard can be adapted using multiphase mixture properties. This does lead to a good prediction. However at choked conditions, this method fails.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.