Abstract

Stress-induced optical birefringence in transparent materials has long been a common technique of stress analysis. Although stress-induced acoustic birefringence was discovered more than 20 years ago, its development and actual applications are still limited. This paper will look at the similarities and differences between the propagation of light waves in photoelastic materials and the propagation of ultrasonic waves in deformed solids. Critical comparisons of the experimental methods employed in photoelasticity with those available in modern ultrasonic measuring technique show why previous studies on ultrasonic measurement of stresses were not very successful. A new experimental technique is devised for using ultrasonic waves for stress analysis. The technique employs a single rotatable 10-MHz shear transducer as the transmitter and receiver of ultrasonic pulses. The enlarged display of the 10-MHz modulated-pulse pattern of reflected echoes provides a convenient way to determine the directions of principal axis of the stress within ±3 deg. The pulse-echo-overlap method is used to measure the absolute velocities of the two principal shear waves. The difference in principal stresses is then calculated from the velocity measurements. Test results of common structural-aluminum and steel specimens under uniaxial compression show a linear relation between the velocity changes and the applied stress. Ultrasonic measurements of stress distribution in a 6.35-cm diameter, 1.9-cm-thick aluminum disk under diametric compression are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.