Abstract

Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This paper proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.