Abstract
A numerical method of solving for the elastic wave eigenmodes in acoustic waveguides of arbitrary cross-section is presented. Operating under the assumptions of linear, isotropic materials, it utilizes a finite-difference method on a staggered grid to solve for the acoustic eigenmodes (field and frequency) of the vector-field elastic wave equation with a given propagation constant. Free, fixed, symmetry, and anti-symmetry boundary conditions are implemented, enabling efficient simulation of acoustic structures with geometrical symmetries and terminations. Perfectly matched layers are also implemented, allowing for the simulation of radiative (leaky) modes. The method is analogous to that in eigenmode solvers ubiquitously employed in electromagnetics to find waveguide modes, and enables design of acoustic waveguides as well as seamless integration with electromagnetic solvers for optomechanical device design. The accuracy of the solver is demonstrated by calculating eigenfrequencies and mode shapes for common acoustic modes across four orders of magnitude in frequency in several simple geometries and comparing the results to analytical solutions where available or to numerical solvers based on more computationally expensive methods. The solver is utilized to demonstrate a novel type of leaky-guided acoustic wave that couples simultaneously to two independent radiation channels (directions) with different polarizations – a ‘bi-leaky’ mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.