Abstract

AbstractWe conducted in situ high‐pressure acoustic‐wave velocity measurements of Fe2+‐bearing MgSiO3 glass up to 158 GPa by Brillouin scattering spectroscopy to clarify the effect of iron on the elasticity and structural evolution of silicate melts in the lower mantle. The change in trend of the VS profile, likely induced by the structural transition of Si‐O coordination number from 6 to 6+ proposed in previous studies of silicate glasses, was confirmed to be located at ∼106 GPa. Given the iron contents of partial melts derived from a pyrolitic or chondritic mantle, the transition pressure would be at around 84–97 GPa, which is well within the lowermost‐mantle pressure regime. Our data show the substitution of 12 mol% Fe in MgSiO3 glass decreases the VS by ∼5.5%. This implies that iron affects the buoyancy relations between melts/crystals and the melts at the lowermost mantle will have the higher coordination number than 6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call