Abstract

The ultrasonic properties of the hexagonal closed packed structured Ni3Mo, Ni3Nb and Ni3Ta compounds were studied at room temperature for their characterization. For the investigations of ultrasonic properties, the second-order elastic constants using Lennard–Jones potential were computed. The velocities V 1 and V 2 have minima and maxima respectively at 45° with the unique axis of the crystal, while V 3 increases with respect to angle with the unique axis of the crystal. The inconsistent behaviour of angle-dependent velocities is associated with the action of second-order elastic constants. Debye average sound velocities of these compounds increase with the angle and has maximum at 55° with the unique axis at room temperature. Hence, when a sound wave travels at 55° with the unique axis of these materials, the average sound velocity is found to be maximum. The results achieved are discussed and compared with the available experimental and theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.