Abstract

A better understanding of wave attenuation in hydrate-bearing sediments is necessary for the improved geophysical quantification of marine gas hydrates. Here we compare the attenuation behavior of hydrate-saturated vs water-saturated sediments at site GC955H, in the Gulf of Mexico, which was surveyed during the JIP Leg II expedition. We compute the P-wave attenuation of the gas hydrate bearing sediments using the median frequency shift method on the monopole waveforms. The results show that P-wave attenuation due to low saturation ( 0.4) in the hydrate-filled pores of coarse-grained sediments can be up to as much as three times more than that of the water-saturated case. The correlation analysis shows that the P-wave attenuation increases with the increasing gas hydrate saturation for the highly saturated gas hydrate-bearing sand interval while the correlation of the P-wave attenuation and hydrate saturation is weak for low saturated gas hydrate-bearing shale interval. The results show that P-wave attenuation is more likely to be used as a geophysical proxy for gas hydrate quantification of highly concentrated coarse-grained sediment rather than for that of fine-grained sediment. To examine the P-wave behavior in sand, we use the improved LCAM model, which accounts for physical factors such as grain boundary roughness and squirt flow to explain the observed differences in P-wave attenuation between hydrate and water-saturated coarse-grained sediment. Our results provide further geophysical evidences for P-wave behavior in the gas hydrate-bearing sediments in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call