Abstract
This paper presents an acoustic topology optimization approach using isogeometric boundary element methods based on subdivision surfaces to optimize the distribution of sound adsorption materials adhering to structural surfaces. The geometries are constructed from triangular control meshes through Loop subdivision scheme, and the associated Box-spline functions that generate limit smooth subdivision surfaces are employed to discretize the acoustic boundary integral equations. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. The potential of the proposed topology optimization approach for engineering prototyping is illustrated by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.