Abstract

Acoustic transport through topological edge states in phononic crystals improves the suppression of backscattering, which gives these systems significant potential for controlling sound waves. Recent research shows that only one acoustic edge state caused by topological valley phases can transmit in phononic crystals. This paper proposes a genre of valley phases with one, two, and three topological edge states created by transforming the structure of unit cells. The bulk-edge correspondence indicates that these edge states are topological based on the topological invariant number (i.e., the valley Chern number of one, two, and three) of this system coinciding with the number of topological edge states. Different types of defects are introduced into the phononic crystals, whose transmission spectra show that they can withstand bending defects. These results indicate that these systems have significant potential for application in noise control, acoustic communication, and acoustic-electrical integration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call