Abstract

The present article describes an acoustic thermometer to measure the average air temperature integrated along a path ranging from 1 m to 11 m. It is based on time-of-flight measurement of ultrasound pulses at frequencies close to 40 kHz. Several methods for the detection of arrival times were investigated, notably cross-correlation and cross-spectrum. The uncertainty of the instrument itself, independent of that of the Cramer equation has been estimated at between 0.13 K to 0.09 K for distances ranging from 3 m to 11 m respectively. In practice, an experimental comparison with Pt100 probes (uncertainty of 0.1 K) has shown that the estimated uncertainty levels are relatively compatible, although the linearity of the system does not appear to be very good. To solve this problem, appropriate values for the Cramer coefficients a0 and a1 for an acoustic frequency of about 40 kHz have been determined, which contributes to improved knowledge of this equation as a function of acoustic frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call