Abstract

Exposure of rats to unpredictable loud sound pulses increases activity of the rate-limiting enzyme for serotonin synthesis, tryptophan hydroxylase (TPH), in the median raphe nucleus (MnR) and a mesolimbocortical serotonergic system. Corticotropin-releasing factor (CRF)-induced activation of a subset of serotonergic neurons in the caudal dorsal raphe nucleus (DR) may underlie stress-related increases in TPH activity in the MnR and a mesolimbocortical serotonergic system. An in vivo acoustic stimulation paradigm and an in vitro brain slice preparation were designed to test the hypothesis that stress-related stimuli and CRF receptor activation have convergent actions on TPH activity in the caudal DR (DRC). We measured 5-hydroxytryptophan (5-HTP) accumulation as an index of TPH activity following inhibition of aromatic amino acid decarboxylase (using NSD-1015). To examine effects of acoustic stimulation on TPH activity, male Wistar rats, pretreated with NSD-1015, were exposed to a 30 min sham, predictable or unpredictable acoustic stimulation paradigm; brains were frozen and microdissected for analyses of tissue 5-HTP concentrations in subregions of the DR. To examine the effect of CRF receptor activation on TPH activity, freshly prepared brain slices were exposed to CRF (0–2000 nM) for 10 min in the presence of NSD-1015, then frozen and microdissected for analysis of tissue 5-HTP concentrations. Increases in TPH activity in the DRC, but not other subregions, were observed in both paradigms. These findings are consistent with the hypothesis that stress-related increases in TPH activity are mediated via effects of CRF or CRF-related neuropeptides on a mesolimbocortical serotonergic system originating in the DRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call