Abstract

Using a Pt/Y3Fe5O12 (YIG) hybrid structure attached to a piezoelectric actuator, we demonstrate the generation of spin currents from sound waves. This “acoustic spin pumping” (ASP) is caused by the sound wave generated by the piezoelectric actuator, which then modulates the distribution function of magnons in the YIG layer and results in a pure-spin-current injection into the Pt layer across the Pt/YIG interface. In the Pt layer, this injected spin current is converted into an electric voltage due to the inverse spin-Hall effect (ISHE). The ISHE induced by the ASP is detected by measuring a voltage in the Pt layer at the piezoelectric resonance frequency of the actuator coupled with the Pt/YIG system. The frequency-dependent measurements enable us to separate the ASP-induced signals from extrinsic heating effects. Our model calculation based on the linear response theory provides us with a qualitative and quantitative understanding of the ASP in the Pt/YIG system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call