Abstract
Direction of arrival (DOA) estimation of multiple sources using sensor arrays has been widely studied in the last few decades, particularly, the spherical harmonic analysis utilizing a spherical array. Both the number of sensors on the aperture and size of the sphere can affect the estimation accuracy dramatically. However, those two factors are conflicted to each other in a single spherical array. In this paper, a multiple spherical arrays structure is proposed to provide an alternative design to the traditional single spherical array for the spherical harmonic decomposition, to obtain better localization performance. The new structure consists of several identical spheres in a given area, and the microphones are placed identically on each sphere. The spherical harmonic analysis algorithm using the new multiple array structure for the problem of multiple acoustic sources localization is presented. Simulation results show that the multiple spherical arrays can provide a more accurate direction of arrival (DOA) estimation for the multiple sources than that of a single spherical array, distinguish several adjacent sources more efficiently, and reduce the number of microphones on each sphere without decreasing its’ estimation accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.