Abstract

In this paper, we propose using distributed diffusion adaptive networks for acoustic signature identification, as a time-varying autoregressive (TVAR) stochastic model. A distributed adaptive sensor network considers spatio-temporal challenges simultaneously. To analyze diffusion networks under TVAR modeling problem circumstances, we investigate and elaborate on their performance under non-stationary conditions. Different versions of diffusion networks are then theoretically compared under the problem conditions. Furthermore, their superiority to single point observations is shown. Finally, the proposed algorithms are implemented on a raw and real sensor network dataset recorded from moving vehicles. The experimental results well support the theoretical findings, and demonstrate the excellence and efficacy of distributed diffusion adaptive networks for this case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.