Abstract
Acoustic, force, and compound muscle action-potential signals were recorded simultaneously during maximal isometric twitches of frog gastrocnemius muscles. The onset of sound production occurred after the onset of muscle depolarization but before the onset of external force production. Acoustic waveforms consisted of oscillations that initially increased in amplitude, followed by decaying oscillations. The peak-to-peak acoustic amplitude increased with increasing temperature with a Q10 of 2.6 +/- 0.2 over a range of 7.0-25.0 degrees C. The acoustic amplitude increased with increasing muscle length up to approximately 90% of the optimal length for force generation. As length was increased further, the acoustic amplitude decreased. Microphones positioned on opposite sides of the muscle recorded acoustic signals that were 180 degrees out of phase. These results provided evidence that sound production is produced by lateral oscillations of muscle. The oscillation frequency may provide a measure of mechanical properties of muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.