Abstract
This paper presents a study of spectral clustering-based approaches to acoustic segment modeling (ASM). ASM aims at finding the underlying phoneme-like speech units and building the corresponding acoustic models in the unsupervised setting, where no prior linguistic knowledge and manual transcriptions are available. A typical ASM process involves three stages, namely initial segmentation, segment labeling, and iterative modeling. This work focuses on the improvement of segment labeling. Specifically, we use posterior features as the segment representations, and apply spectral clustering algorithms on the posterior representations. We propose a Gaussian component clustering (GCC) approach and a segment clustering (SC) approach. GCC applies spectral clustering on a set of Gaussian components, and SC applies spectral clustering on a large number of speech segments. Moreover, to exploit the complementary information of different posterior representations, a multiview segment clustering (MSC) approach is proposed. MSC simultaneously utilizes multiple posterior representations to cluster speech segments. To address the computational problem of spectral clustering in dealing with large numbers of speech segments, we use inner product similarity graph and make reformulations to avoid the explicit computation of the affinity matrix and Laplacian matrix. We carried out two sets of experiments for evaluation. First, we evaluated the ASM accuracy on the OGI-MTS dataset, and it was shown that our approach could yield 18.7% relative purity improvement and 15.1% relative NMI improvement compared with the baseline approach. Second, we examined the performances of our approaches in the real application of zero-resource query-by-example spoken term detection on SWS2012 dataset, and it was shown that our approaches could provide consistent improvement on four different testing scenarios with three evaluation metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.