Abstract

The problem of underwater acoustic scattering from truly composite wind-wave surfaces under zero-gradient conditions ( Delta c=0) is examined. Here the dominant small-scale component is postulated to be a soliton surface ensemble, produced by the nonlinear wind-wave interactions and associated with the wind-drift surface layer riding on the underlying, mostly large-scale gravity-capillary component of the composite surface. A general bistatic analysis, based on the Kirchhoff approximation, is presented, which includes arbitrary geometries, beam patterns, and general signals. Both low-frequency O(0.2-1 kHz) and high-frequency O(>or approximately=3 kHz) signals are considered, and far-field (Fraunhofer) geometries are assumed. Surface Doppler, including Doppler spread and the modulation effects of the large-scale component, are examined. Both forward-scatter and backscatter regimes are considered in the determination of the scattered field and received wave intensities, scattering cross-sections, and coherency measures of surface scatter. Particular attention is given to the high-frequency cases, with small grazing angles, moderate-to-strong mean surface winds, and essentially bubble-free regimes. Recent empirical data appropriate to these conditions are included, which support the soliton conjecture and illustrate the general results. Both coherent and incoherent scattering are examined, along with relevant surface Doppler data.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.