Abstract

For acoustic roughness monitoring of the railway network at train travelling speed, new direct measurement methods are required. Common direct measurement methods need the blocking of track sections, as they are based on manually operated devices. Indirect measurement methods such as accelerometer or microphone measurements can be installed on the train, but require a conversion of the obtained measurement data to rail roughness. Optical measurement methods allow a direct measurement from the moving train, even at higher speeds, due to the contact-free nature of the measurement. This paper investigates the influence of various disturbances on the measurement result, which are expected on the train. The frequently used chord method deploying laser triangulation sensors is used. Four sensors are integrated into the setup, thus providing the possibility to combine the results from four chord methods. The measurements of the optical system are compared with a tactile measurement of METAS (Swiss Federal Institute of Metrology) on a test bench equipped with a reference rail segment. It is shown that dust and water on the rail have a significant influence in the range of small wavelengths. Displacements and tilting of the sensor array, as well as vibrations, can be compensated to a certain level by the chord method, while a single sensor is significantly disturbed. The combination of four different chord lengths and selection of the theoretically optimal method for each one-third octave band shows an improvement of the measurement result. Based on the observations made, recommendations for practical tests on the train are concluded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.