Abstract

The acoustic coupling between the injection system and the acoustic fluctuations in liquid rocket engine combustion chambers is an important issue in the understanding of the thermo-acoustic instability phenomenon. This paper presents the results of a wide-ranging parametric investigation of the acoustic response of a two-phase injection system submitted to a forced high-amplitude transverse acoustic field. Two domes, one for the gas and one for the liquid, were expressly designed to feed three identical coaxial injectors. The internal mode shapes of the domes were characterized by measuring pressure signals at different locations in the domes. Experimental mode shapes showed good agreement with those predicted by numerical simulations. Acoustic pressure amplitudes up to 23% of those induced in the main cavity can be found in both the gas and liquid domes. The response efficiency in a dome depends on the position of the injectors’ exit in the acoustic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.